
Dynamic Thermal Management for MPEG-2 Decoding
Wonbok Lee

Department of Electrical Engineering
University of Southern California

Los Angeles CA 90089
(213) 821-4206

wonbokle@usc.edu

Kimish Patel
Department of Electrical Engineering

University of Southern California
Los Angeles CA 90089

(213) 821-4206

kimishpa@usc.edu

Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles CA 90089

(213)-740-4458

pedram@usc.edu

ABSTRACT

In this paper, we propose an effective dynamic thermal
management (DTM) scheme for MPEG-2 decoding by allowing
some degree of spatiotemporal quality degradation. Given a target
MPEG-2 decoding time, we dynamically select either an intra-
frame spatial degradation or an inter-frame temporal degradation
strategy in order to make sure that the microprocessor chip will
continue to stay in a thermally safe state of operation, albeit with
certain amount of image/video quality loss. For our experiments,
we use the MPEG-2 decoder program of MediaBench and
modify/combine Wattch and HotSpot for the power and thermal
simulations and measurements, respectively. Our experimental
results show that we achieve thermally safe state with spatial
quality degradation of 0.12 Root Mean Square Error (RMSE) and
with frame drop rate of 12.5% on average.

Categories and Subject Descriptors
B.7.2 [Hardware]: Design Aids

General Terms
Design, Reliability

Keywords

Thermal model, temperature-aware design, MPEG-2 decoding.

1. INTRODUCTION
Peak power dissipation and resulting temperature rise have

become the dominant limiting factor to processor performance

and a significant component of its cost. Expensive packaging and

heat removal solutions are needed to achieve acceptable substrate

and interconnect temperatures in high-performance

microprocessors. The heat flux in state-of-the-art microprocessors

chips is currently in the range of 10-20 W/cm2, which is al-ready

exceeding the confines of air cooling. Current thermal solutions

are designed to limit the peak processor power dissipation to

ensure its reliable operation under worst-case scenarios. However,

the peak processor power and ensuing peak temperature are

hardly ever observed. Dynamic thermal management (DTM) has

been proposed as a class of micro-architectural solutions and

software strategies to achieve the highest processor performance

under a peak temperature limit. Furthermore, it is known that

power density across the chip is non-uniform, resulting in

localized hot spots. DTM solutions must address this phenomenon

as much as they tackle system-wide temperature violations. When

the chip approaches the thermal limit, a DTM controller initiates

hardware reconfiguration, slow-down, or shutdown to lower the

chip temperature.

Traditionally, thermal issues within a chip have been handled

at the package level. Chip manufacturers have devised

sophisticated, albeit expensive, packaging and cooling assemblies,

i.e., heat sinks and micro-fluidic conduits, to the processor chips

so as to efficiently transfer heat generated within a chip to the

ambient environment. However, packaging and cooling systems

without knowledge about the resource utilization and power

dissipation demands of a software program running on a micro-

processor chip have some major limitations. As such, micro-

architecture level solutions can result in changes to the dynamic

temperature profile of a chip so as to avoid the worst-case power

density and temperature conditions.

In order to reduce chances of creating a major thermal

problem at the architectural level, a number of DTM strategies

have been proposed [1]-[9]. These techniques rely on two pre-

defined levels of thermal limits: a trigger temperature and an

emergency temperature. The trigger temperature is a thermal limit

over which a dynamic predictive/reactive thermal management

schemes will be initiated whereas the emergency temperature is a

thermal limit over which the chip may be damaged and hence

must be avoided at all cost. Those DTM schemes include

architectural adaptations such as fetch-toggling [1] (instruction

fetching is stalled for next N cycles), instruction cache throttling

[2] (throttle the instruction forwarding from the instruction cache

to the instruction buffer), activity migration [3] (dispatching

computations to different locations on the die) and dynamic

voltage and frequency scaling [4] (DVFS). Those DTM schemes

are application-independent schemes. On the contrary, in this

paper we propose an application-specific DTM technique,

specifically designed for an MPEG-2 decoding program running

on a general purpose microprocessor chip.

As computers become faster, absolute decoding time of a

frame in MPEG-2 video stream becomes smaller. However,

MPEG-2 standard prescribes a fixed frame rate of

29.97framess/sec (NTSC) and 25frames/sec (PAL) [10]. The

frame rate is determined in consideration of slow trace/pursuit

nature of human visual system (HVS). A frame rate higher than

this 25-30 does not effectively improve the perceived quality of

image/video streams to human eyes. Hence this, frame rate and

processor speed dependent, available residual time from the given

frame decoding time can be used to achieve thermally safe state of

the processor.

This paper is organized as follows. In section 2, current state-

of-the-art in DTM is reviewed. Section 3 introduces the

motivational example of our DTM for MPEG-2 decoding while

section 4 covers the theoretical parts of our DTM scheme. Our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’06, October 4-6, 2006, Tegernsee, Germany.
Copyright 2006 ACM 1-59593-462-6/06/0010...$5

simulation environment, benchmark programs and

implementation details will be followed in section 5. In section 6,

we show the experimental results of our work and section 7 is the

conclusions.

2. PRIOR WORK
Many of the requisite performance features of microprocessor

such as real-time processing and mean-time to failure are

significantly affected by the power dissipation and resulting

temperature. Hence, dynamic thermal management (DTM) has

been proposed as a class of micro-architectural solutions and

software strategies to achieve the highest processor performance

under a peak temperature limit. To this end, there have been a

number of studies that address this problem as explained in the

following discussion.

Recently, a number of architectural adaptations based DTM

solutions have been proposed. In [1]-[3], the authors propose

fetch toggling, instruction cache throttling, and activity migration,

respectively. In [4], the authors consider instruction window

resizing and switching among active functional units as DTM

techniques for multimedia applications. In [6]-[8], Skadron et al.

introduce several DTM methods. In [6], they introduce

temperature-tracking based frequency scaling, localized toggling

and computation migration to spare hardware units. In [7], they

propose a hybrid DTM technique that combines fetch gating and

DVS. In [8], they propose a formal feedback control theory and

use DTM as a test vehicle. DTM is invoked in response to the

localized hotspot rather than chip-wide temperature.

In [5], Mircea et al. propose HotSpot which is an accurate

yet fast thermal model based on thermal resistance and thermal

capacitance at micro-architectural functional block level as well as

two dimensional grid levels. Their model is implemented and

widely used as a popular thermal simulator [11] . In [9], Lee et al.

propose a software solution for temperature sensing that utilizes

the built-in performance monitoring unit (PMU) to generate

performance related information such as I/D cache access, number

of instructions, number of stalls, etc. They derive temperature

behavior by associating these performance figures with power.

Many power management (PM) schemes for MPEG have

been proposed. In [12], Son et al. propose a dynamic voltage

scaling (DVS) on MPEG decoding. Basically, they apply two

dynamic voltage scaling schemes on MPEG decoding. One is

based on delay and drop rate minimization algorithm and the

other is based on predictive (per Group of Picture, GOP) decoding

time algorithm. Their delay and drop rate minimization algorithm

regulates the system voltage depending on the system clock speed

and the current decoding status. The proposed algorithm assumes

MPEG decoding in a low-performance machine in which the

frame rate is less than 30frame/second.

In [13][14], Choi et al. propose an off-chip latency driven

dynamic voltage and frequency scaling (DVFS) for MPEG

decoding. In designing their DVFS strategy, the authors utilize the

frame dependent versus frame independent parts within MPEG

decoding process in [13] and the on-chip versus off-chip (CPU

versus memory) dependent workloads within the frame decoding

process in [14]. Their schemes are effective in slow machine

which has a frame rate of 10 ~ 15.

All of the aforementioned schemes make use of the available,

frame rate dependent, slack time to employ various low power

strategies, but none of them make use of it for DTM. Since CPU

speed and computational power are increasing rapidly, we have

more slack time available during the decoding of an MPEG frame

(with a fixed deadline of say 33ms). In this paper we propose to

gather and distribute this available slack time to achieve thermally

safe state of the microprocessor chip during MPEG-2 decoding.

The safe thermal state comes at the expense of image/video

quality.

Main Memory Latency 100 cycles/10 cycles

L1 I/D Cache
64KB 2-way 32Byte block

1 cycle hit latency

I/D-TLB
Fully associate, 128 entries

30 cycles miss latency

Branch Predictor 4K Bimodal

Functional Units
4 IntegerALU,1 IntegerMULT/DIV

2 FP ALU, 1 FP MULT/DIV

RUU/LSQ size 64/32

Instruction Fetch Queue 8

In order Issue False

Wrong Path Execution True

Issue Width 6 instruction per cycles

Table 1. Baseline Configuration of Simulated Processor

Table 1 summarizes the architectural parameters that we use

in our simulation.

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Frame

M
ili

 S
ec

o
nd

Intel Pentium 2.8GHz Intel Xeon 1.7GHz

Decoding Time

Figure 1 Actual MPEG-2 Decoding Time

3. MOTIVATIONAL OBSERVATION
Figure 1 reports per-frame decoding time variation of a MPEG-2

video stream decoded with MediaBench MPEG-2 decoder

program [15]. The video stream has 60 frames and 704x480

resolutions. We run the decoder with two different machines: An

Intel Xeon 1.7GHz and an Intel Pentium IV 2.8GHz. The OS is

Linux-2.6.15. Note that the actual decoding time varies depending

on the types of frame (I, P and B) Since I-frame is computation

intensive compared to the other two frame types, its decoding time

is longer than the others. In each machine, the average decoding

times are 42.01msec and 24.01msec, respectively. Since the

MPEG-2 standard specifies its frame rate as 29.97fps (which

corresponds to approximately 33msec/frame), we clearly cannot

finish the decoding of a frame with this frame rate in Intel Xeon

chip. For this reason, MPEG standard has a frame discarding

scheme [16] whereby it can drop B frame, P frame and I frame in

stepwise manner, depending on the machine’s clock speed.

In Pentium IV, on the contrary, the actual decoding time

takes less than 33msec/frame. For such a case, MPEG standard

has its frame rate control scheme that waits for some time to

display the frame in a regular interval. For example, Berkeley

MPEG-1 [17] uses ‘select’ function call to slow down displaying

frames in a fixed rate of 29.97fps. Since the current state-of-the-

art processors are much faster, it is expected that more residual

time will be available within the allowed frame decoding time.

Figure 2 Thermal Variations & Violations in the Simulator

In Figure 2, we simulate this ever-decreasing actual decoding

time in our simulator. (Section 5 will explain the simulator in

detail) Simply speaking, we assume some fixed number of cycles

that correspond to the given decoding time deadline (33msec). If

the actual decoding finishes earlier than these many cycles

(deadline), we stall the processor inside the simulator for the rest

of the cycles until the deadline is reached and only then, we start

the decoding of the next frame. The corresponding results are

shown in Figure 2 where the X-axis plots the simulation cycles in

10K granularity and the Y-axis plots the temperature. As shown in

the figure, the temperature starts to decrease when the actual

decoding finishes any time earlier than the given frame decoding

time. Note that the peak temperature goes up to 103�, which can

invoke logical or timing error in the chip.

Time

Time

Ttrigger

33msec
Temperature

Ttrigger

33msec

33msec

33msec

Decoding Residual Decoding Residual

D D D D D DR R R R R R

Temperature

Figure 3 Overview of our DTM Scheme

In order to avoid thermal violation (in Figure 2), we propose

a new DTM scheme, especially for the MPEG-2 decoding. Figure

3 shows the basic idea behind: Given a deadline for frame

decoding, the conventional MPEG-2 decoder uses the first part of

the decoding time to finish the decoding task while it rests in the

second part. Unfortunately, the trigger temperature/emergency

temperature of the chip may be exceeded in the first part. In our

strategy, short periods of decoding are interleaved with short

periods of processor stalls so that the chip temperature never

exceeds the trigger temperature, yet the decoding task is

completed before the deadline.

Time

Temperature

Decoding Time of a Frame

Target Trigger Temperature Range
1 2 3

Tmin

Tmax

Superlinear

Region

Linear Region

Constant Region

Figure 4 Detailed Analysis of Temperature Variation

4. DTM METHODOLOGIES

4.1. Thermal Models
We use a thermal model developed by Skadron et al. in [8]. In this

model, the temperature increase in the chip is represented by:

()old

th th th

TP
T t

C R C
∆ = − ⋅∆

⋅

 (1)

where ∆t is a time interval, P is the average power dissipated in

the interval, Rth is a thermal resistance, Cth is a thermal

capacitance and Told is the initial temperature, respectively. After a

time interval, the new temperature is:

new oldT T T= + ∆ (2)

Let tinitial and tfinal denote two instances of time (and their

difference denoted by ∆t), respectively. Moreover, assume that the

power dissipation is non-zero when the processor is running. Now,

the thermal rising gradient with respect to time is calculated as:

Rising: ()oldr

th th th

TT P

t C R C

∆
= −

∆

(3)

In contrast, when the processor is stalled (it is put in the

standby mode) during the residual time, assume that the chip

power dissipation is negligible compared to active power i.e., P=0.

Then, the thermal falling gradient with respect to time is

calculated as:

Falling: ()
f old

th th

T T

t R C

∆
= −

∆

 (4)

In Figure 4, we model this thermal gradient over time as

three piecewise linear functions. Since the amount of decoding

workloads/steps within a MPEG-2 frame decoding is frame

dependent yet more or less the same, we specify the temperature

variation during MPEG-2 frame decoding on a DTM-ignorant

machine as Tmax and Tmin peaks and valleys, respectively. Notice

that Tmax and Tmin are mostly invariant when a program is in a

steady-state but may slightly vary when a program behavior

changes. Moreover, obtaining Tmax and Tmin is not always possible

in the actual system but is always feasible in the thermal simulator,

which is aimed at anticipating application’s real on-chip thermal

behavior. Then, the thermal behaviors of MPEG-2 decoding

program are divided into three regions:

1. Super-linear Region: old

th th th

TP

C R C
>>

 In this region,

rT

t

∆

∆

changes dramatically and the power term dominates

the other temperature term in equation 1. Since the

thermal gradient during the rising of the curve is higher

than falling counterpart, a longer processor stall time is

needed compared to the time it took for the temperature

to rise to the same level.

2. Linear Region:
 old

th th th

TP

C R C
>

 In this region, rT

t

∆

∆

changes almost linearly and the power term is relatively

larger than the temperature term in equation 1. The

thermal gradients during the rising and the falling of the

curve are comparable and both take almost same

amount of time.

3. Constant Region:
 old

th th th

TP

C R C
≈

 In this region, rT

t

∆

∆

becomes almost zero and the power term is comparable

to the other temperature term in equation 1. Since the

thermal gradient during the falling of the curve is higher

than the rising counterpart, a shorter processor stall time

is needed compared to the time it took for the

temperature to rise to the same level.

Unfortunately, those three regions are not sharply bounded in

the thermal gradient curve. Moreover, the trigger temperature is a

material/architectural parameters dependent value whereas

Tmax/Tmin is MPEG-2 input file dependent one, the trigger

temperature can be located at any level within the thermal

gradient curve. Hence, we carry out the following steps in order to

build our DTM framework for MPEG-2 decoding.

1) Run a MPEG-2 video stream in MPEG-2 decoder

program and get both Tmax and Tmin on the machine without any

DTM policy applied.

2) Check Ttrigger of the processor. If Ttrigger > Tmax, machine is

thermally safe and no DTM policy is needed to be applied.

3) If Ttrigger < Tmin, this means decoding workload is large and

DTM policy must do significant quality degradation to achieve

thermally safe state.

4) If Tmin < Ttrigger < Tmax, which we show as a target trigger

temperature range in Figure 4, then, if Ttrigger lies in the constant

region, thermally safe state can be achieved with little or no

quality degradation, whereas if it lies in the linear region some

quality degradation must be accepted to achieve thermally safe

state. Finally, if Ttrigger lies in the super-linear region, which is the

worst case, then thermally safe state can be achieved only at the

cost of significant image/video quality degradation.

4.2. DTM Policy
During the residual time, as shown in Figure 3 (top figure),

the thermal gradient is high during its initial phase and slowly

decreases afterwards. Even though significant amount of time is

spent in ‘stalling the processor’, i.e. doing nothing but waiting for

the arrival of frame display time, the drop in the temperature is

relatively small. This leads us to the idea depicted in Figure 3

(bottom figure): Stall the processor only for the duration of time

till the thermal gradient remains steep.

From the analysis presented in the previous section, high

thermal gradient occurs only when the chip operates in either the

linear or the constant regions. Our experiments with a set of input

files with a trigger temperature of 81.8� show that the trigger

temperature is positioned in the ‘linear region’ where thermal

rising/falling gradients are comparable. Based on this simulation

results and extensive experiments, we choose an empirical value

of 1 million cycles to stall the processor every time we reach the

triggering temperature. This gives us comparable rising and

thermal falling gradients

Note we may end up missing deadlines for frames unless we

do have enough residual time. In order to reduce these deadline

misses, we collect this slack time (actual decoding time subtracted

from given decoding time) for the future use. This slack time

saving is accomplished by having a buffer in the main memory

which has the size of 3 frames. Every time we finish actual

decoding before the given decoding time and the buffer has space

for frames, we write the decoded frame to the buffer and claim the

remaining slack time for the future use. If the buffer does not have

space, we wait for the buffer to have a space. If we either miss or

predict to miss the deadline for the frame being decoded, we

resort to either spatial or temporal quality degradations to meet

the deadlines. This deadline satisfaction and slack time collection

continue over the whole execution time.

Spatial quality degradation: After enough amount of frame

decoding time, e.g. around 100msec, thermal behavior of MPEG-

2 decoding program becomes monotonous. Hence in decoding of

all subsequent frames, we can predict how many times the thermal

curve will reach to the trigger temperature for the following frame

decoding. Since we allow stalling 1 million cycles every time we

reach the trigger temperature, the total number of stall cycles can

be easily predicted. If the predicted stall cycles are larger than the

available slack time that we collected, deadline miss is expected

hence activation of spatial quality degradation (as explained

latter) is triggered.

Temporal quality degradation: Note that spatial quality

degradation does not guarantee the deadline satisfaction, i.e., we

may run out of slack times to meet the deadline. If deadline miss

occurs, we will drop the next frame. The rationale is that this

frame has already missed its deadline and it is going to be

displayed at the time when the next frame is supposed to be

displayed. In other words, instead of delaying the display of the

whole sequence of frames, we decide to drop the next frame so

that the second to the next frame can be decoded before its

deadline.

4.3. Spatiotemporal Quality Degradation
In our definition, spatial quality degradation is the ratio of

how the modified frame differs from the original frame. We use

root mean square error (RMSE) as a measurement metric of the

spatial image quality degradation. The temporal quality

degradation, in our definition, is the ratio of how the modified

video stream differs from the original video stream. We use the

number of skipped/dropped frames as a measurement metric of

the temporal video quality degradation. Clearly, the spatial quality

degradation is an intra-frame level image distortion whereas the

temporal quality degradation is an inter-frame level video

distortion. Note that the time saved due to spatial quality

degradation is smaller than the temporal quality degradation.

4.3.1. Spatial Quality Degradation
In order to find the best decoding steps to minimally distort the

frame image quality, we analyze the typical MPEG-2 decoding

sequence shown in Figure 5. Frame decoding in MPEG-2 has

several major steps: Variable Length Decoding (VLD), Inverse

Quantization (IQ), motion compensation, Inverse Discrete Cosine

Transformation (IDCT), dither, display, etc. Among those steps,

we observe the SNR scalability and the saturation control, since

they are employed to enhance the image quality. SNR scalability

provides the enhancement of video quality by means of

enhancement layer. Basically, it has two levels of layers: a base

layer and an enhancement layer. Base layer includes the coarse

level of DCT coefficients and the enhancement layer includes the

finer level of DCT coefficients. On the contrary, the saturation

control is clipping the results of IQ. Those two fine granularity

scalability (FGS) techniques in MPEG-2 are initially introduced

to cope with the time-varying bandwidth for the smooth image

quality degradation. Our experiments show that these two steps

consume approximately 10% of the total frame decoding time.

Since they are spatial quality related metrics and relatively easy to

be divided from MPEG-2 decoding steps, we choose them to do

the spatial quality degradation in our DTM framework.

33msec

MPEG Bitstream

VLD

Inverse Scan

IDCT

Motion

Compensation

Dither frame

Display frame

D
ec

od
in

g
Se

qu
en

ce

Construct
Frame

Construct
MB

Inverse

Quantization

Scalability

Figure 5 Typical MPEG-2 Decoding Steps

4.3.2. Temporal Quality Degradation
As mentioned earlier, temporal quality degradation is done by

dropping the frames when deadline miss occurs. Note that not all

the frames can be dropped arbitrarily. If a P frame is dropped,

then all the subsequent P frames must be dropped till the next I

frame. Whereas a B frame can be dropped arbitrarily since the

next B frame does not depend on the B frame currently being

dropped. In this paper hence we decide to drop only B frames so

if the next frame to be dropped is not B then we keep decoding

other I and P frames till we get the B frame.

Input files No. of
frame

Frame
resolution

I: P: B frame
distribution

gitape.m2v 14 720 x 480 1: 4: 9

mei60f.m2v 50 704 x 480 5: 13: 32

hhilong.m2v 45 720 x 576 3: 8: 34

time_015.m2v 50 704 x 480 5: 12: 33

soccer_015.m2v 51 640 x 480 4: 14: 33

tens_015.m2v 47 352 x 192 5: 12: 30

cact_015.m2v 50 352 x 192 5: 12: 33

Table 2 MPEG-2 Input Files Used in the Experiments

5. SIMULATION ENVIRONMENT
For our experiments, we modify and combine Simplescalar

[18] Wattch [19] and HotSpot [11]. The simulated micro-

processor model is based on ALPHA 21364, which is has the

feature size of 0.18µ, Vdd of 1.6V and a clock speed of 1GHz. The

power model used in the simulation does not model leakage

power. In order to avoid modifying the default floor-plan in

HotSpot, we use the same feature size and linearly scale both Vdd

to 1.8V and a clock speed to 1.2GHz. The trigger and emergency

temperature are set to 81.8 and 85.0�, respectively [6], whereas

the ambient and initial temperatures are set to 40.0 and 60.0�

respectively. Our combined simulator generates thermal results of

each functional unit every 10K cycles.

For the application programs, we use MPEG-2 decoder

program of MediaBench benchmark suite [15]. Table 2

summarizes the MPEG-2 input files used in our experiments,

which we mostly obtained from [20]. We add a few custom made

files for the better comparison and limit the total number of frame

to 51 in all experiments. Since 0.1� rise/fall of temperature may

take 100K cycles [6], our profile of thermal behavior of a program

has long enough time. Our DTM policy is implemented in the

MPEG-2 decoder program such that it interacts with our

combined simulator.

Max/Min temperature (�) Input files real decoding
time (msec) DTM-ignorant DTM

gitape 21.5 101.5 / 85.5 81.8 / 80.5

mei60f 19.6 99.6 / 83.8 81.8 / 80.5

hhilong 17.2 97.2 / 81.9 81.8 / 80.5

time_015 11.8 91.5 / 76.2 81.8 / 80.5

soccer_015 8.5 82.5 / 70.5 81.8 / 72.4

tens_015 4.0 73.4 / 63.2 N/A

cact_015 4.0 73.4 / 64.1 N/A

Table 3 Thermal Behaviors in the Hottest Functional Unit

6. EXPERIMENTAL RESULTS
In Table 3, we summarize the experimental results. The left

column shows the actually measured decoding time and right two

columns compare the maximum/minimum temperatures before

and after DTM scheme. As you see, maximum temperature in

DTM-ignorant system shows that thermal crisis can occur in some

cases. Note that the maximum-minimum temperatures for the

input files with similar resolution are the same since they have

approximately the same decoding workload. When the resolution

becomes smaller, the maximum-minimum temperatures are both

decreased. The N/A parts mean that no DTM scheme is necessary

for those input files.

Image/Video Quality Degradation

Spatial Temporal Input files
Scaled
frames

RMSE Dropped
frames

Drop ratio (%)

gitape 5 0.119 5 35.7

mei60f 8 0.125 15 30.0

hhilong 0 N/A 8 8.8

time_015 0 N/A 0 0

soccer_015 0 N/A 0 0

tens_015 0 N/A 0 0

cact_015 0 N/A 0 0

Table 4 Spatial/Temporal Quality Degradation

In Table 4, we summarize the experimental results for the

image quality degradation. For the measurement of spatial quality

degradation, we use root mean square error (RMSE) of the

luminance (Y) values of frames. Note that this RMSE values are

not calculated among all frames but for the spatially scaled frames

only. For the temporal quality degradation, we show the number

of frames dropped. As shown, when the resolution of a frame

becomes smaller, number of dropped frames reduces since we

have enough amount of residual time and become non-aggressive,

i.e., scale frame frequently instead. Clearly, frames with large

resolution will have more number of dropped frames.

Figure 6 Comparison of the Thermal Variations

 In Figure 6, we show the run time thermal behavior during
the simulation. For simplicity, we use three input files which have
different resolutions: gitape, soccer_015 and cact_015. Each point
in the X-axis is the measurement step in 10K cycles and Y-axis is
the temperature and all measurements are made when a program
reaches to the thermally steady state. We categorize files into
three groups based on their workload, i.e. actual decoding time:
Files with heavy workload execute DTM aggressively (top graph),
files with medium workload execute DTM non-aggressively
(middle graph), and files with light workload never execute DTM
(bottom graph). Clearly, actual decoding time (in turn, the
residual time) has strong relationship with the necessity of DTM
scheme and our scheme shows that we achieve thermally safe state
with different image/video quality degradation, i.e., number of
dropped frame and the number of scaled frames are smaller in
soccer_015 than frame dropped/scaled in gitape.

7. CONCLUSIONS
In this paper, we propose an effective DTM scheme for MPEG-2

decoding with the spatiotemporal quality degradation. Our DTM

algorithm makes use of the ever-decreasing actual frame decoding

time and utilizes the residual time within a frame decoding by

distributing it to achieve thermally safe state. As a consequence,

quality degradation is observed. Our experimental results show

that we achieve thermally safe state with spatial quality

degradation of 0.12 in terms of RMSE value and with a frame

drop rate of 12% on average. Our future research will carry out

the analysis of the other steps of MPEG decoding in order to do

more stepwise quality degradation with respect to decoding time.

8. REFERENCE
[1] D. Brooks, M. Martonosi, “Dynamic Thermal Management

for High-Performance Microprocessors,” Proceedings of

International Symposium on High Performance Computer

Architecture (HPCA), January, 2001.

[2] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa,
R. Philip, J. Alvarez, “Thermal Management System for
High Performance PowerPC Microprocessors,” Proceedings

of IEEE Computer Society International Conference

(COMPCON), 1997.

[3] S. Heo, K. Barr, K. Asonovic, “Reducing Power Density
through Activity Migration,” Proceedings of International

Symposium on Low Power Electronics and Design (ISLPED),
August, 2003.

[4] Jay Srinivasan, Sarita V. Adve, “Predictive Dynamic
Thermal Management for Multimedia Applications,”
Proceedings of International Conference on Supercomputing

(ICS), June, 2003.

[5] Mircea R. Stan, K. Skadron, M. Barcella, W. Huang, K.
Sankaranarayanan, S. Velusamy, “HotSpot: a Dynamic
Compact Thermal Model at the Processor-Architecture
Level,” Microelectronics Journal: Circuit and Systems, 2003.

[6] K. Skadron, Mircea R. Stan, W. Huang, S. Velusamy, Kathik
Sankaranarayanan, David Tarjan, “Temperature-Aware
Microarchitecture,” Proceedings of International Symposium

on Computer Architecture (ISCA), June, 2003.

[7] K. Skadron, “Hybrid Architectural Dynamic Thermal
Management,” Proceedings of the Design Automation and

Test in Europe (DATE), 2004.

[8] K. Skadron, T. Abdelzaher, Mircea R. Stan, “Control-
Theoretic Techniques and Thermal-RC Modeling for
Accurate and Localized Dynamic Thermal Management,”
Proceedings of International Symposium on High-

Performance Computer Architecture (HPCA), 2002.

[9] K. J. Lee, K. Skadron, “Using Performance Counters for
Runtime Temperature Sensing in High-Performance
Processors,” Proceedings of High Performance, Power-

Aware Computing (HP-PAC), April, 2005.

[10] MPEG-2 Standard: International Organization for
Standardization/International Electro-technical Commission
(ISO/IEC) 13818-2.

[11] HotSpot at http://lava.cs.virginia.edu/HotSpot

[12] D. Son, C. Yu, H. Kim, “Dynamic Voltage Scaling on
MPEG Decoding,” Proceedings of International Conference

on Parallel and Distributed Systems (ICPADS), 2001.

[13] K. Choi, R. Soma, Massoud Pedram, “Off-chip Latency
Driven Dynamic Voltage and Frequency Scaling for an
MPEG Decoding,” Proceedings of Design Automation

Conference (DAC), June, 2004.

[14] K. Choi, K. Dantu, W. C. Cheng, Massoud Pedram, “Frame-
Based Dynamic Voltage and Frequency Scaling for a MPEG
Decoder,” Proceedings of International Conference on

Computer Aided Design (ICCAD), 2002.

[15] MediaBench at: http://euler.slu.edu/~fritts/mediabench

[16] M. Verderber, A. Zemva, A. Trost, “HW/SW Codesign of
the MPEG-2 Video Decoder,” Proceeding of International

Parallel and Distributed Processing Symposium, 2003.

[17] Berkeleympeg http://bmrc.berkeley.edu/frame/research/mpeg

[18] Simplescalar turorial at http://www.simplescalar.com

[19] D. Brooks, V. Tiwari, M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,”
Proceedings of International Symposium on Computer

Architecture (ISCA), 2000.

[20] MPEG2 streams at http://www.mpeg2.de/video/streams

